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Fungus infected agarwood(AquiZaria agaZZochu Roxb.) which is distributed in the north eastern 

district of India is known in the Orient as one of the most prized incences. 1) Investigation on 

the constituents of the wood was initiated by Kafuku and Ichikawa in 1935, 2) who reported the 

presence of substance(s) which on saponification afforded benzylacetone and dihydrocinnamic acid. 

Later, Indian chemists investigated the constituents of the steam distilled oil(agar oil), and 

disclosed the structures of several sesquiterpenes such as agarospirol, 3a) agarol, 3b) and agaro- 

furans. 3c) In this communication, we describe the isolation and the structure determination of 

the benzylacetone producing substance which was given the name “agarotetrol”. 

Agarotetrol($ , C17H1806, mp 118121°C, [aID-21.9’(c 1.04, MeOH), was isolated from an acetone 

extract of powdered agarwood by dry column chromatography followed by preparative TLC. 495) The 

spectral data clearly demonstrated the presence of a y-pyrone ring[IR(KBr) 1660, 1603 cm -l; w 

(EtOH) 252 nm(~ 10660)16) which is 2,3,5_trisubstituted[NMR 6 ppm 6.96(s, 1 H), ‘) l14.0(d)8)] and 

a phenethyl group(NMR, Table 1). The phenethyl group should be located at C2 of the y-pyrone 

ring from the mechanistic consideration of the degradation reaction(vide supm). The remaining 

moiety was proved to consist of four adjacent secondary alcohols by NMR(Table 1) and by the 

formation of tetraacetate(2). 91 Thus, the planar structure of agarotetrol was revealed to be 

2-(2-phenylethyl)-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone. 

The relative stereochemistry of the four hydroxy groups was then determined as follows. 

Treatment of ,$, with refluxing acetone in the presence of anhydrous CuS04 afforded a single mono- 

acetonide :,1°-12) . indicating that agarotetrol($) possesses only one cis glycol system. The base 

peak m/e258 observed in MS of 2 was most reasonably interpreted as the one arising from a retro 

Diels-Alder fragmentation(M+-2,2-dimethyl-1,3-dioxole), 13) suggesting the cis glycol be located 

at C6 and C . This prediction was confirmed by the derivation of the 5,8-diacetate 4 

3 by acetylition”’ 15) 

19 9 14) from 
‘L 

PI, 
and 6.03 

followed by hydrolysis of the acetonide group. Two doublets at 6 5.92 

ppm 
observed in ,J$ were assigned to the acetoxy bearing methine protons, C5-H and C8-H 

respectively, based on the chemical shifts of methine protons of the tetraacetate $ which were 

determined by their multiplicity and Eu(dpm)3 induced shifts(Table 1). Thus the relative stereo- 

chemistry of the hydroxy groups in i should be 5/6 trans, 6/7 cis, and 7/8 trans. The vicinal 

coupling constants in 2 and 4 were also in accord with this conclusion, assuming a half-chair 
% ,-U 

conformation of the cyclohexene ring 16) . 
m which 5-OAc takes pseudo-axial position as indicated 

in the structure in Fig. 1. 17) 
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Table 1. NMR Spectra of Agarotetrol, and Tetra- and Diacetatesa 

Agarotetrol(l$b Tetraacetate($ Diacetate($) 

1 1 
Carbon 

HNMR 13c NMR HNMR 
(CD30D+C6D6=1:3) (CD30D) (CCl4) 

AEu' 
1 
HNMRd 
(CDC13) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-CH2CH2- 

-C6H5 

171.1(s) 

6.06(s) 114.0(d) 

181.8(s) 

4.78(d,J=7.5) 66.8(d) 

4.32(diff s) 70.1(d) 

4.26(diff s) 72.5(d) 

5.05(d,J=4.2) 73.9(d) 

165.1(s) 

141.1(s) 

2.72(m) 36.2(t),33.7(t) 

7.18(m) 121.7(s),l29.5(d) 

129.3(d),127.3(d) 

-COCH?, 

6.06(s) 4.4 6.14(s) 

5.78(d,J=4.5) 9.8 5.92(d,J=3.7) 

5.38(dd,J=4.5,3.0) 4.0 4.10(dd,J=3.7,2.7) 

5.31(dd,J=8.2,3.0) 3.8 4.04(dd,J=8.2,2.7) 

5.90(d,J=8.2) 2.4 6.03(d,J=8.2) 

2.87(m) 0.5 2.90(m) 

7.22(m) 7.27(m) 

2.07(5),2.23(s) 

a Multiplicity: s,singlet; d,doublet; dd,doublet of doublets; t,triplet; q,quartet; m,multiplet; 
diff,diffused. Multiplicity in carbon NMR obtained through NOE mode. Chemical shifts are in 
units relative to tetramethylsilane. Coupling constants(J) are expressed in Hz. b Assignments 
of Cs-H to Cs-H may be interchangeable. The preferred conformation of 1 seems to be different 
from those of 2 and 4, presumably owing to intramolecular hydrogen bondlngs. c P.V. Demarco, 
T.K. Elzey, R.%. Lewh, and E. Wenkert, J.flm.Chem.Soc., 92, 5734, 5737(1970). d CDsOD was added. 
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The absolute configuration of agarotetrol($) was determined by the exciton chirality method. 
18) 

The di-p-methoxybenzoate($ 19) obtained by p-methoxybenzoylation of t was shown by NMR 19) to take 

the same preferred conformation as $ and 2. The split Cotton effects shown in Fig. 2 indicated 

a negative chirality of the dibenzoate groups giving the absolute configuration depicted in the 

structure 1. 
'L 

It should be noted that agarotetrol has an unprecedent novel structure in that it bears hither- 

to unknown 2-phenethylchromone system and also in its high oxidation level. 

AcO H 

2: R=Ac 
'L 
4:R=H 
'L 
6: R = p-MeCC6H4C0 
% 

Fig. 1. Conformation of Agarotetrol 
Derivatives 

I 

200 250 300 350 nm 

Fig. 2. CD Spectra(MeOH) 
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